Name: $\qquad$
$\qquad$

## Lesson 10.2 Modeling Linear Associations

## Graph a line of best fit given bivariate data with a linear association.

## Example

The scores obtained by 10 teams in two rounds of a current-events quiz competition are given in the table.

| First Round Score (x) | 5 | 7 | 3 | 6 | 3 | 5 | 1 | 2 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Second Round Score (y) | 4 | 6 | 2 | 5 | 4 | 6 | 3 | 3 | 3 | 10 |

a) Construct the scatter plot and sketch a line of best fit to represent the given table of bivariate data.


First Round Score
b) Identify the association and describe the meaning of the association in context. There is a strong, positive, and linear association between the first round score and the second round score.
c) Identify the outlier and describe the meaning of the outlier in context.

The data point $(4,10)$ is an outlier representing a second round score of 10 obtained by a team whose first round score was a 4.

Name: $\qquad$
$\qquad$

## Complete.

1. Data collected to study the association between the mass of a dog and the distance the dog can run in a given period of time is shown in the table.

| Mass (x kg) | 12 | 12.6 | 13.4 | 15 | 18 | 20 | 14 | 13.8 | 14.6 | 12.8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance Run (y km) | 3.2 | 3.0 | 2.7 | 2.6 | 2.2 | 2.0 | 2.5 | 2.4 | 2.3 | 3.0 |


| Mass (x kg) | 12.6 | 13 | 15.6 | 18 | 20 | 14 | 16.2 | 15 | 13.2 | 13 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance Run (y km) | 3.1 | 2.9 | 2.3 | 2.0 | 1.8 | 2.4 | 2.3 | 2.4 | 2.8 | 1.0 |

a) Construct the scatter plot and sketch a line of best fit to represent the given table of bivariate data. Use 1 centimeter on the horizontal axis to represent 1 kilogram for $12 \leq x \leq 21$ and 1 centimeter on the vertical axis to represent 0.5 kilometer.


Mass (kg)
b) Identify the association and describe the meaning of the association in context.

There is a $\qquad$ and $\qquad$ association between the mass of a dog and the distance its run in a given period of time.
c) Identify the outlier and describe the meaning of the outlier in context. The data point (_, _ ) is an outlier representing only
$\qquad$ kilometer(s) of distance run when the mass of the dog is
$\qquad$ kilogram(s).

Name:
Date: $\qquad$

## Solve. Show your work.

2. Data from a study of the association between the amount of radio advertising time, $t$ minutes, for a particular brand of beverage and the number of unit sales of the beverage, $y$ thousands, are shown in the table below.

| Advertising Time (x min) | 6 | 5 | 8 | 10 | 12 | 9 | 8 | 3 | 5 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unit Sales (y thousands) | 2.3 | 2.2 | 3.2 | 3.5 | 3.8 | 3.0 | 2.8 | 1.8 | 5.0 | 2.6 |

a) Use the graph paper on the next page. Construct the scatter plot and sketch a line of best fit to represent the given table of bivariate data. Use 1 centimeter on the horizontal axis to represent 2 minutes and 2 centimeters on the vertical axis to represent 1 thousand units.
b) Identify the association and describe the meaning of the association in context.
c) Identify the outlier and describe the meaning of the outlier in context.

Name:
Date:


Name: $\qquad$ Date: $\qquad$

## Solve. Show your work.

3. A fitness trainer collected data to investigate the association between the number of training days per week, $x$, and the time needed for a runner to complete a 2-mile run, y minutes.

| Number of Training Days (x) | 0 | 1 | 1 | 2 | 2 | 2 | 3 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time (y minutes) | 17.0 | 16.4 | 16.0 | 14.0 | 14.2 | 14.6 | 13.0 |


| Number of Training Days (x) | 3 | 3 | 4 | 4 | 4 | 5 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time (y minutes) | 13.6 | 12.8 | 11.8 | 18.0 | 10.8 | 9.6 | 10.0 |

a) Use the graph paper on the next page. Construct the scatter plot and sketch a line of best fit to represent the given table of bivariate data. Use 2 centimeters on the horizontal axis to represent 1 day and 1 centimeter on the vertical axis to represent 1 minute for $9 \leq y \leq 18$.
b) Identify the association and describe the meaning of the association in context.
c) Identify the outlier and describe the meaning of the outlier in context.

Name:
Date:


Name: $\qquad$ Date: $\qquad$

## Write a linear equation for a line of best fit.

## Example

The table below gives the product yield, $y$ grams, when two chemicals react at various temperatures $x$, in degree Celsius.

| Temperature $\left(\boldsymbol{x}^{\circ} \mathbf{C}\right)$ | 50 | 60 | 62 | 90 | 76 | 80 | 85 | 72 | 70 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yield $(\boldsymbol{y}$ grams) | 24.0 | 20.0 | 20.0 | 14.0 | 18.0 | 16.0 | 18.0 | 18.0 | 20.0 |

a) Construct the scatter plot for the given table of bivariate data. Use 2 centimeters on the horizontal axis from 50 to 90 to represent 10 degree Celsius. Use 1 centimeter on the vertical axis from 10 to 24 to represent 2 grams. Sketch a line of best fit and write its equation.


Temperature ( ${ }^{\circ} \mathrm{C}$ )

First find the slope of the line of best fit that passes through the points $(55,22)$ and $(75,18)$.

$$
\begin{aligned}
m & =\frac{18-22}{75-55} \\
& =\frac{-4}{20} \\
& =-0.2
\end{aligned}
$$

Next find the $y$-intercept using the equation in slope-intercept form.

$$
\begin{aligned}
y & =m x+b & & \text { Use slope-intercept form. } \\
22 & =-0.2(55)+b & & \text { Substitute values for } m, x, \text { anc } \\
22 & =-11+b & & \text { Multiply. } \\
22+11 & =-11+b+11 & & \text { Add } 11 \text { to both sides. } \\
b & =33 & & \text { Simplify. }
\end{aligned}
$$

Finally, write an equation.
$y=m x+b$
$y=-0.2 x+33 \quad$ Substitute -0.2 for $m$ and 33 for $b$.
The equation of the line of best fit is $y=-0.2 x+33$.
b) Interpret the meaning of the slope and $y$-intercept in context.

The slope $m$ represents the decreasing yield of product as temperature increases. Specifically, there will be a product yield decrease of 0.2 gram with every degree Celsius increase in temperature at which the two chemicals react.

The $y$-intercept represents the amount of product yield when $T=0^{\circ} \mathrm{C}$.
Specifically, the data show that there is a product yield of 33 grams
at $O$ degree Celsius.

Name: $\qquad$ Date: $\qquad$

## Complete.

4. The diagram below shows the scatter plot of the data from the first example in this lesson. Write an equation of the line of best fit.


First Round Score

Name:
Date: $\qquad$

The slope of line of best fit that passes through the points (3, $\qquad$ ) and
(4, $\qquad$ ) is

$=$ $\qquad$

Use slope-intercept form to find $y$-intercept.


Write an equation.

$$
\begin{aligned}
y & =m x+b \\
& =\square
\end{aligned}
$$

Substitute $\qquad$ for $m$ and $\qquad$ for $b$.

So, the equation of the line of best fit is

