Lesson 10.2 Modeling Linear Associations

Graph a line of best fit given bivariate data with a linear association.

irst R	ound	Score (x)	5	7	3	6	3	5	1	2	4	4
econ	d Rou	nd Score (y)	4	6	2	5	4	6	3	3	3	10
Coi give	nstruct en tab	t the scatter p le of bivariate	lot ar data	nd ske	etch a	line d	of bes	st fit t	o rep	resen	t the	
		y 5co	res o	f Cur	rent-	event	s Qu					
Second Round Score	10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 3 - 2 - 1 -			•		•				,	×	

Name	
------	--

- b) Identify the association and describe the meaning of the association in context.
 There is a strong, positive, and linear association between the first round score and the second round score.
- c) Identify the outlier and describe the meaning of the outlier in context.
 The data point (4, 10) is an outlier representing a second round score of 10 obtained by a team whose first round score was a 4.

Name: _

Complete.

1. Data collected to study the association between the mass of a dog and the distance the dog can run in a given period of time is shown in the table.

Mass (x kg)	12	12.6	13.4	15	18	20	14	13.8	14.6	12.8
Distance Run (y km)	3.2	3.0	2.7	2.6	2.2	2.0	2.5	2.4	2.3	3.0

Mass (x kg)	12.6	13	15.6	18	20	14	16.2	15	13.2	13
Distance Run (y km)	3.1	2.9	2.3	2.0	1.8	2.4	2.3	2.4	2.8	1.0

a) Construct the scatter plot and sketch a line of best fit to represent the given table of bivariate data. Use 1 centimeter on the horizontal axis to represent 1 kilogram for $12 \le x \le 21$ and 1 centimeter on the vertical axis to represent 0.5 kilometer.

Ν	a	m	e	

b) Identify the association and describe the meaning of the association in context.

There is a _____, ____, and _____, association between the mass of a dog and the distance its run in a given period of time.

c) Identify the outlier and describe the meaning of the outlier in context.

The data point (_____, ____) is an outlier representing only

_____ kilometer(s) of distance run when the mass of the dog is

_____ kilogram(s).

Name: ____

Solve. Show your work.

2. Data from a study of the association between the amount of radio advertising time, *t* minutes, for a particular brand of beverage and the number of unit sales of the beverage, *y* thousands, are shown in the table below.

Advertising Time (x min)	6	5	8	10	12	9	8	3	5	7
Unit Sales (y thousands)	2.3	2.2	3.2	3.5	3.8	3.0	2.8	1.8	5.0	2.6

- a) Use the graph paper on the next page. Construct the scatter plot and sketch a line of best fit to represent the given table of bivariate data. Use 1 centimeter on the horizontal axis to represent 2 minutes and 2 centimeters on the vertical axis to represent
 1 thousand units.
- **b)** Identify the association and describe the meaning of the association in context.

c) Identify the outlier and describe the meaning of the outlier in context.

Name: _

Solve. Show your work.

3. A fitness trainer collected data to investigate the association between the number of training days per week, x, and the time needed for a runner to complete a 2-mile run, y minutes.

Number of Training Days (x)	0	1	1	2	2	2	3
Time (y minutes)	17.0	16.4	16.0	14.0	14.2	14.6	13.0
Number of Training Days (x)	3	3	4	4	4	5	5
Time (y minutes)	13.6	12.8	11.8	18.0	10.8	9.6	10.0

- Use the graph paper on the next page. Construct the scatter plot and sketch a) a line of best fit to represent the given table of bivariate data. Use 2 centimeters on the horizontal axis to represent 1 day and 1 centimeter on the vertical axis to represent 1 minute for $9 \le y \le 18$.
- **b)** Identify the association and describe the meaning of the association in context.

c) Identify the outlier and describe the meaning of the outlier in context.

© Marshall Cavendish International (Singapore) Private Limited.

Write a linear equation for a line of best fit.

Example

The table below gives the product yield, y grams, when two chemicals react at various temperatures x, in degree Celsius.

Temperature (x °C)	50	60	62	90	76	80	85	72	70
Yield (y grams)	24.0	20.0	20.0	14.0	18.0	16.0	18.0	18.0	20.0

a) Construct the scatter plot for the given table of bivariate data. Use 2 centimeters on the horizontal axis from 50 to 90 to represent 10 degree Celsius. Use 1 centimeter on the vertical axis from 10 to 24 to represent 2 grams. Sketch a line of best fit and write its equation.

First find the slope of the line of best fit that passes through the points

(55, 22) and (75, 18).

$$m = \frac{18 - 22}{75 - 55} = \frac{-4}{20} = -0.2$$

Next find the *y*-intercept using the equation in slope-intercept form.

y = mx + b	Use slope-intercept form.
22 = -0.2(55) + b	Substitute values for <i>m</i> , <i>x</i> , anc
22 = -11 + b	Multiply.
22 + 11 = -11 + b + 11	Add 11 to both sides.
b = 33	Simplify.

Finally, write an equation.

y = mx + b

$$y = -0.2x + 33$$

Substitute -0.2 for *m* and 33 for *b*.

The equation of the line of best fit is y = -0.2x + 33.

b) Interpret the meaning of the slope and y-intercept in context. The slope *m* represents the decreasing yield of product as temperature increases. Specifically, there will be a product yield *decrease* of 0.2 gram with every degree Celsius increase in temperature at which the two chemicals react. The y-intercept represents the amount of product yield when $T = 0^{\circ}$ C. Specifically, the data show that there is a product yield of 33 grams at 0 degree Celsius.

Do not extend the line to meet the *y*-axis if there are values omitted on the *x*-axis.

Complete.

4. The diagram below shows the scatter plot of the data from the first example in this lesson. Write an equation of the line of best fit.

First Round Score

Name: _____

The slope of line of best fit that passes through the points (3, _____) and

Use slope-intercept form to find y-intercept.

So, the equation of the line of best fit is