## **Lesson 4.3 Writing Linear Equations**

## Use the slope-intercept form to identify slopes and y-intercepts.

- Example -

An equation of a line is given. State the slope and y-intercept of the line.

$$y - 6x + 9 = 0$$

First write the equation in slope-intercept form.

$$y - 6x + 9 = 0$$
  
 $y - 6x + 9 - 9 = 0 - 9$ 

Subtract 9 from both sides.

$$y-6x=-9$$
 Simplify.  
 $y-6x+6x=-9+6x$  Add 6x to both sides.  
 $y=6x-9$  Write in slope-intercept form.

Comparing the equation y = 6x - 9 with y = mx + b:

Slope: 
$$m = 6$$

y-intercept: 
$$b = 9$$

## Complete.

1. 
$$2x + 6y = 15$$

$$2x + 6y = 15$$

Subtract \_\_\_\_\_ on both sides.

Divide both sides by \_\_\_\_\_.

$$x = -\frac{1}{x} + \frac{1}{x}$$

Write in slope-intercept form.

Comparing the equation  $y = \underline{\hspace{1cm}}$  with y = mx + b:

Slope: 
$$m = -$$

For each line, state its slope and its y-intercept.

**2.** 
$$x + 4y = 1$$

**3.** 
$$6y - 2x = 15$$

Write an equation of a line given its slope and y-intercept.

Example -

Use the given slope and y-intercept of a line to write an equation in slope-intercept form

Slope, 
$$m = \frac{4}{3}$$

y-intercept, 
$$b = -1$$

$$y = mx + b$$

$$y = \frac{4}{3}x + (-1)$$

Substitute the given values for m and b.

$$y = \frac{4}{3}x - 1$$

Complete.

**4.** Slope, 
$$m = 9$$

y-intercept, 
$$b = 2$$

$$y = mx + b$$

Substitute the given values for m and b.

Use the given slope and y-intercept of a line to write an equation in slope-intercept form.

**5.** Slope, 
$$m = -\frac{3}{8}$$

y-intercept, 
$$b = \frac{1}{4}$$

**6.** Slope, 
$$m = -3$$

y-intercept, 
$$b = -8$$

# Write an equation of a line, given its y-intercept and the equation of another line parallel to the line.

Example

A line has the equation 3y = 2 - 5x. Write an equation of a line parallel to this given line that has a y-intercept of 2.

First write the given equation in slope-intercept form.

$$3y = 2 - 5x$$

$$\frac{3y}{3} = \frac{2-5x}{3}$$

Divide both sides by 3.

$$y = \frac{2}{3} - \frac{5}{3}x$$

Simplify.

$$y = -\frac{5}{3}x + \frac{2}{3}$$

Write in slope-intercept form.

The given line has a slope  $m = \frac{-\frac{5}{3}}{3}$  and y-intercept  $b = \frac{\frac{2}{3}}{3}$ .

Then write an equation for the parallel line with slope  $m = \frac{-\frac{5}{3}}{2}$  and y-intercept,

$$y = mx + b$$

$$y = -\frac{5}{3}x + 2$$

Substitute the given values for *m* and *b*.

So, an equation of the line parallel to 3y = 2 - 5x is  $y = -\frac{5}{3}x + 2$ .

## Complete.

7. A line has the equation  $\frac{1}{2}y + 3 = 4x$ . Write an equation of a line parallel to this given line that has a y-intercept of 5.

First write the given equation in slope-intercept form.

$$\frac{1}{2}y + 3 = 4x$$

$$\frac{1}{2}y + 3 - \underline{\hspace{1cm}} = 4x - \underline{\hspace{1cm}}$$

Subtract 3 from both sides.



Simplify.

Multiply both sides by \_\_\_\_\_.

Simplify. Write in slope-intercept form.

The line has slope m = and y-intercept b =

Then write an equation for the parallel line with slope  $m = \underline{\hspace{1cm}}$  and y-intercept,  $b = \underline{\hspace{1cm}}$ .

$$y = mx + b$$

Substitute the given values for m and b.

So, an equation of the line parallel to  $\frac{1}{2}y + 3 = 4x$  is \_\_\_\_\_\_.

## Write an equation.

- **8.** A line has the equation 4x 13 = 2y. Write an equation of a line parallel to this given line that has a y-intercept of 1.
- **9.** A line has the equation 8 3y 9x = 0. Write an equation of a line parallel to this given line that has a *y*-intercept of 2.

110

## Write an equation of a line given its slope and a point on the line.

- Example -

A line has slope -1 and passes through the point (-2, 4). Write an equation of the line.

First use the given slope, -1, and the values x = -2 and y = 4 to find the y-intercept.

$$y = mx + b$$

$$4 = -1(-2) + b$$

$$4 = 2 + b$$

$$4-2=2+b-2$$

$$b=2$$

Write the slope-intercept form.

Substitute the values for m, x, and y.

Simplify.

Subtract 2 from both sides.

Simplify. Rearrange.

So, the *y*-intercept is \_\_\_\_\_2\_\_.

Then use the given slope, -1 and the y-intercept,  $\underline{2}$ , to write an equation in slope-intercept form.

$$y = mx + b$$

$$y = (-1)x + 2$$

$$y = -x + 2$$

Write in slope-intercept form.

Substitute the values for *m* and *b*.

Simplify.

So, an equation of the line is y = -x + 2

## Complete.

**10.** A line has slope 6 and passes through the point  $\left(1, \frac{1}{3}\right)$ . Write an equation of the line.

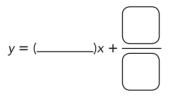
$$y = mx + b$$

Write in slope-intercept form.

Substitute the values for m, x, and y.

| <u>_</u> - | = | = | + |  |
|------------|---|---|---|--|

Simplify. Subtract \_\_\_\_\_ from both sides.


|                   |   | , |
|-------------------|---|---|
| $\overline{\ \ }$ | = | b |

Simplify.

So, the *y*-intercept is 
$$-\frac{1}{2}$$
.

y = mx + b

Write in slope-intercept form.



Substitute the values for *m* and *b*.

Simplify.

So, an equation of the line is \_\_\_\_\_\_.

#### Solve.

11. A line has slope -3 and passes through the point (2, 3). Write an equation of the line.

**12.** A line has slope  $-\frac{3}{2}$  and passes through the point (2, -4). Write an equation of the line.

## Write an equation of a line, given a point on the line and the equation of a parallel line.

Example -

A line passes through the point  $\left(1, \frac{1}{2}\right)$  and is parallel to the line represented

by the equation y = 5 - 2x. Write the equation of the line.

Use the given equation to find the slope of the parallel line.

First write the equation y = 5 - 2x in slope-intercept form.

$$y = 5 - 2x$$

$$y = -2x + 5$$

Write in slope-intercept form.

The line has slope  $m = \underline{-2}$ .

So, the line parallel to y = 5 - 2x has slope  $m = \underline{\phantom{a}}$ 

$$y = mx + b$$

Write in slope-intercept form.

$$\frac{1}{2} = -2(1) + b$$

Substitute the values for m, x, and y.

$$\frac{1}{2}$$
 + 2 = -2 + b + 2

Simplify. Add 2 to both sides.

$$\frac{5}{2} = b$$

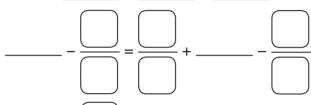
Simplify.

So, the *y*-intercept is  $\frac{5}{2}$ 

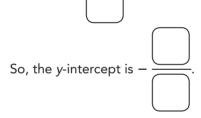
So, an equation of the line is  $\frac{y = -2x + \frac{5}{2}}{}$ 

## Complete.

**13.** A line passes through the point  $\left(\frac{1}{2}, 0\right)$  and is parallel to the line represented by the equation y = 3x. Write the equation of the line.


The line y = 3x has slope m =\_\_\_\_\_.

So, the line parallel to y = 3x has slope m =\_\_\_\_\_.


Write the equation of a line that passes through the point  $\left(\frac{1}{2}, 0\right)$  and has slope \_\_\_\_\_\_.

Write in slope-intercept form.

Substitute the values for m, x, and y.



Simplify. Subtract \_\_\_\_\_ from both sides.



Simplify.

So, an equation of the line is \_\_\_\_\_

#### Solve.

114

- **14.** A line passes through the point (0, 4) and is parallel to the line represented by the equation y = 8x + 3. Write the equation of the line.
- **15.** A line passes through the point (-1, -2) and is parallel to the line represented by the equation y = 1 7x. Write the equation of the line.

## Write an equation of a line given two points on a line.

Example

Write an equation of the line that passes through the pair of points (2, 5) and (-1, -3).

First use the slope formula to find the slope.

Let (2, 5) be  $(x_1, y_1)$  and (-1, -3) be  $(x_2, y_2)$ .

Slope = 
$$\frac{y_2 - y_1}{x_2 - x_1}$$

Use the slope formula.

$$=\frac{-3-5}{-1-2}$$

Substitute values.

$$=\frac{-8}{-3}$$

Subtract.

$$=\frac{8}{3}$$

Simplify.

The line has slope  $m = \frac{8}{3}$ 

Method 1

**Method 1**Use the slope  $m = \frac{8}{3}$  and the point (2, 5) to find the *y*-intercept.

$$y = mx + b$$

Write in slope-intercept form.

$$5 = \frac{8}{3}(2) + b$$

Substitute the values for m, x, and y.

$$5 = \frac{16}{3} + b$$

Simplify.

$$5 - \frac{16}{3} = \frac{16}{3} + b - \frac{16}{3}$$

Subtract  $\frac{16}{3}$  from both sides.

$$-\frac{1}{3} = b$$

Simplify.

The *y*-intercept is  $\frac{-\frac{1}{3}}{}$ . So, an equation of the line is  $y = \frac{8}{3}x - \frac{1}{3}$ 

#### Method 2

Use the slope  $m = \frac{3}{3}$  and the point (-1, -3) to find the y-intercept.

$$y = mx + b$$

Write in slope-intercept form.

$$-3 = \frac{8}{3}(-1) + b$$

Substitute the values for m, x, and y.

$$-3 = -\frac{8}{3} + b$$

Simplify.

$$-3 + \frac{8}{3} = -\frac{8}{3} + b + \frac{8}{3}$$

Add  $\frac{8}{3}$  to both sides.

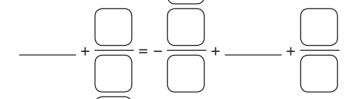
$$-\frac{1}{3} = b$$

Simplify.

## Complete.

**16.** Write an equation of the line that passes through the pair of points (2, 5) and (-1, -3).

Use the slope  $m = \frac{8}{3}$  and the point (-1, -3) to find the y-intercept.


$$y = mx + b$$

Write in slope-intercept form.

Substitute the values for m, x and y.



Simplify.



Add \_\_\_\_\_ to both sides.



Simplify.

116

#### Solve. Show your work.

17. Write an equation of the line that passes through the pair of points (-6, 8) and (6, -4).

**18.** Write an equation of the line that passes through the pair of points (0, 3) and (5, 11).

**19.** Write an equation of the line that passes through the pair of points (-3, 0) and (0, 6).

20. Write an equation of the line that passes through the pair of points (4, 7) and (10, 15).