\qquad
\qquad

Lesson 4.4 Sketching Graphs of Linear Equations

Graph a linear equation by using two or more points.

Example

Graph the equation $y=\frac{1}{3} x+4$.
STEP 1 Construct a table of values. Choose three values for x and solve to find corresponding values for y.

x	-3	0	3
y	3	4	5

STEP 2 Graph the equation using the table of values.

Choose 0 and multiples of 3 for values of x because of $\frac{1}{3} x$ in the equation.

Complete.

1. Graph the equation $y=\frac{1}{2} x-1$.

\boldsymbol{x}	-2	0	2
\boldsymbol{y}			

\qquad
\qquad

Graph each linear equation by using two or more points.

2. $y=\frac{2}{5} x+2$

3. $y=\frac{5}{3} x-4$

Graph of a linear equation by using m and b.

Example

Graph the equation $y=2 x+3$.
STEP $1 y=2 x+3$ has y-intercept $b=$ \qquad So, it passes through the point (0,3). Plot the point $(0,3)$ on the graph.
STEP 2 The slope of the line is 2 , so the ratio $\frac{\text { Rise }}{\text { Run }}=$ \qquad 2 Use the slope to find another point on the graph. Slope $=2=\frac{2}{1}=\frac{4}{2}=\frac{6}{3}=\ldots$ Using $\frac{\frac{4}{2}}{2}$, you can move up 4 units and then over 2 units to the right to plot a point at (2,7

STEP 3 Use a ruler and draw a line through the points. This line is the graph of the equation $y=2 x+3$.

Name: \qquad Date: \qquad

Complete.

4. Graph the equation $y=-\frac{1}{2} x+3$. Use 1 grid square to represent 1 unit on both axes for each interval.

STEP $1 y=-\frac{1}{2} x+3$ has y-intercept $b=$ \qquad .

So, it passes through the point (\qquad ,).

Plot the point (\qquad
\qquad) on the graph.

STEP 2 The slope of the line is $-\frac{1}{2}$, so the ratio $\frac{\text { Rise }}{\text { Run }}=$

Use the slope to find another point on the graph.
Slope $=\frac{-}{2}=\frac{-1}{2}=\frac{1}{-2}=\frac{\square}{\square}=\frac{\square}{\square}=\ldots$
Using \qquad you can move down \qquad units and then over
\qquad units to the right to plot a point at (\qquad , \qquad).

STEP 3 Use a ruler and draw a line through the points. This line is the graph of the equation \qquad
\qquad
\qquad

Graph. Use 1 grid square to represent 1 unit on both axes for each interval.

5. Graph the equation $y=-x+4$.

Graph of a linear equation given m and a point.

Example

Graph a line with slope 3 that passes through the point (1, 2).
STEP 1 Plot the given point $(1,2)$.
STEP 2 The slope of the line is 3, so the ratio $\frac{\text { Rise }}{\text { Run }}=$ \qquad 3 Use the slope to find another point on the graph.

Slope $=3=\frac{3}{1}=\frac{6}{2}=\frac{9}{3}=\ldots$
Using $\frac{\frac{3}{1}}{}$, move up 3 units and then over 1 unit to the right to plot a point at ($2, ~ 5$,

STEP 3 Use a ruler and draw a line through the points. This is the line with slope 3 that passes through the point (1, 2).

Name: \qquad Date: \qquad

Complete.

6. Graph a line with slope -1 that passes through the point $(-2,3)$. Use 1 grid square to represent 1 unit on both axes for each interval.

STEP 1 Plot the point (\qquad , \qquad) on the graph.

STEP 2 The slope of the line is \qquad so the ratio $\frac{\text { Rise }}{\text { Run }}=$

Using \qquad you can move down \qquad units and then over
\qquad units to the right to plot a point at (\qquad).

STEP 3 Use a ruler and draw a line through the points.

Graph the linear equation.

7. Graph a line with slope $\frac{1}{2}$ that passes through the point $(-1,-2)$. Use 1 grid square to represent 1 unit on both axes for each interval.

