Lesson 7.3 Understanding the Pythagorean Theorem and Solids

Use the Pythagorean Theorem to find unknown side lengths.

Example

Shea uses a spherical bowl shown as a flower vase. Find the diameter of the spherical bowl. Round your answer to the nearest tenth.

Let the radius of the sphere be x inches.

$$
\begin{aligned}
x^{2}+x^{2} & =12^{2} & & \text { Use the Pythagorean Theorem. } \\
x^{2}+x^{2} & =144 & & \text { Multiply. } \\
2 x^{2} & =144 & & \text { Add. } \\
x^{2} & =72 & & \text { Simplify. } \\
x & =\sqrt{72} & & \text { Find the positive square root. } \\
x & \approx 8.5 & & \text { Round to the nearest tenth. }
\end{aligned}
$$

To find the diameter of the sphere, multiply 8.5 by 2 .
$2 x \approx 2 \cdot 8.5$
$2 x \approx 17$
So, the diameter of the spherical bowl is approximately 17 inches.

Name: \qquad Date: \qquad

Complete.

1. A cylindrical container is used to contain a chemical liquid.

a) Find the height of the cylindrical container.

Let the height of the cylindrical container be x centimeters.

So, the height of the cylindrical container is \qquad centimeters.
b) Find the lateral surface area of the cylindrical container. Use 3.14 as an approximation for π. Round your answer to the nearest tenth.

Lateral surface area of cylindrical container
$=2 \pi r h$
Use formula for finding lateral surface area of cylinder.
$\approx 2 \cdot 3.14$. \qquad -

Substitute values for r and h.
Round to the nearest tenth.
\approx \qquad cm^{2}

So, the lateral surface area of the cylindrical container is approximately
\qquad square centimeters.

Name: \qquad

Complete.

2. The height of a cone-shaped paperweight is 4 centimeters. The slant height of the paperweight is 5 centimeters.
a) What is the radius of the paperweight?

Let the radius of the paper weight be r centimeters.

So, the radius of the paperweight is \qquad centimeters.
b) Find the lateral surface area of the paperweight. Use 3.14 as an approximation for π. Round your answer to the nearest tenth.

Lateral surface area of paperweight
$=\pi r l$
Use formula for finding lateral surface area of cone.
≈ 3.14. \qquad - \qquad Substitute values for r and l.
$=$ \qquad cm^{2}

Round to the nearest tenth.
So, the lateral surface area of the paperweight is approximately
\qquad square centimeters.

For this practice, you may solve using $\mathbf{3 . 1 4}$ as an approximation for π. Round your answer to the nearest tenth.

3. Find the radius of the sphere.

Name: \qquad Date: \qquad

For this practice, you may use a calculator. Use 3.14 as an approximation for π. Round your answer to the nearest tenth.

4. A rod, 31 centimeters in length, fits inside a cylindrical metal tank as shown. The height of the tank is 27 centimeters. Find the diameter of the tank.

5. A cone has a 3.5 centimeters radius and a slant height of 6 centimeters. Find the height of the cone.

Use the Pythagorean Theorem to find unknown side lengths.

Example

The diagram shows a rectangular box. Find the length of the central diagonal of the box.

$$
\begin{array}{ll}
A C^{2}=17.1^{2}+14^{2} & \text { Use the Pythagorean Theorem. } \\
A C^{2}=292.41+196 & \text { Multiply. } \\
A C^{2}=488.41 & \text { Add. } \\
A C=\sqrt{488.41} & \text { Find the positive square root. } \\
A C=22.1 \mathrm{~cm} &
\end{array}
$$

So, the length of the central diagonal of the box is \qquad centimeters.

Name: \qquad

Date: \qquad

Complete.

6. The diagram shows a large empty carton.
a) Find the length of the diagonal of the base.
$B D^{2}=$ \qquad $+$ \qquad Use the Pythagorean Theorem.
$B D^{2}=$ \qquad $+$ \qquad Multiply.
$B D^{2}=$ \qquad Add.
$B D=$ \qquad Find the positive square root.
$B D=$ \qquad ft

So, the length of the diagonal of the base is \qquad feet.
b) Find the length of the central diagonal of the box. Round your answer to the nearest tenth.

$$
\begin{array}{ll}
A B^{2}=B D^{2}+\ldots+ & \text { Use the Pythagorean Theorem. } \\
A B^{2}= & \text { Substitute the value of } x . \\
A B^{2}=\square & \text { Multiply. } \\
A B^{2}= & \text { Add. } \\
A B= & \text { Find the positive square root. } \\
A B \approx & \text { Round to the nearest tenth. }
\end{array}
$$

So, the length of the central diagonal of the box is approximately \qquad feet.

Solve. Show your work. Round your answer to the nearest tenth.

7. The diagram shows the dimensions of a rectangular building.
a) Find $A C$.
b) Find $A D$.

