Lesson 7.3 Understanding the Pythagorean Theorem and Solids

Date: _____

Name: __

Complete.

1. A cylindrical container is used to contain a chemical liquid.

a) Find the height of the cylindrical container.

Let the height of the cylindrical container be *x* centimeters.

So, the height of the cylindrical container is ______ centimeters.

b) Find the lateral surface area of the cylindrical container. Use 3.14 as an approximation for π . Round your answer to the nearest tenth.

Lateral surface area of cylindrical container

- = $2\pi rh$ Use formula for finding lateral surface area of cylinder.
- $\approx 2 \cdot 3.14 \cdot _$ Substitute values for *r* and *h*.
- \approx _____ cm² Round to the nearest tenth.

So, the lateral surface area of the cylindrical container is approximately

_____ square centimeters.

N	~	m	~	
1 1	u	111	e	

Date: _

Complete.

- **2.** The height of a cone-shaped paperweight is 4 centimeters. The slant height of the paperweight is 5 centimeters.
 - a) What is the radius of the paperweight?

Let the radius of the paper weight be *r* centimeters.

 $r^2 + ___$

Use the Pythagorean Theorem.

So, the radius of the paperweight is _____ centimeters.

b) Find the lateral surface area of the paperweight. Use 3.14 as an approximation for π . Round your answer to the nearest tenth.

Lateral surface area of paperweight

- = πrl Use formula for finding lateral surface area of cone.
- \approx 3.14 · _____ · ____ Substitute values for *r* and *l*.
- = ____ cm² Round to the nearest tenth.

So, the lateral surface area of the paperweight is approximately

_____ square centimeters.

For this practice, you may solve using 3.14 as an approximation for π . Round your answer to the nearest tenth.

3. Find the radius of the sphere.

27 cm

Name: __

For this practice, you may use a calculator. Use 3.14 as an approximation for π . Round your answer to the nearest tenth.

4. A rod, 31 centimeters in length, fits inside a cylindrical metal tank as shown. The height of the tank is 27 centimeters. Find the diameter of the tank.

5. A cone has a 3.5 centimeters radius and a slant height of 6 centimeters.Find the height of the cone.

Use the Pythagorean Theorem to find unknown side lengths.

6 cm

?

31 cm

Complete.

- 6. The diagram shows a large empty carton.
 - Find the length of the diagonal of the base. a)
 - BD² = _____ + ____ Use the Pythagorean Theorem.
 - BD² = _____ + ____ Multiply.
 - $BD^2 =$ _____ Add.
 - BD = _____ Find the positive square root.
 - *BD* = _____ ft

Find the length of the central diagonal of the box. Round your answer to b) the nearest tenth.

$AB^2 = BD^2 + \underline{\qquad}$	Use the Pythagorean Theorem.
AB ² = +	Substitute the value of <i>x</i> .
AB ² = +	Multiply.
AB ² =	Add.
AB =	Find the positive square root.
<i>AB</i> ≈ ft	Round to the nearest tenth.

So, the length of the central diagonal of the box is approximately ______ feet.

Solve. Show your work. Round your answer to the nearest tenth.

- 7. The diagram shows the dimensions of a rectangular building.
 - Find AC. a)

Marshall Cavendish International (Singapore) Private Limited.

Find AD. b)

Date: _____