\qquad

Lesson 3.3 Understanding Linear Equations with Two Variables

Express a linear relationship between two variables.

Example

a) Write a linear relationship between kilometers, k, and meters, n.

1 kilometer is 1,000 meters. So, a linear equation for n in terms of k is $n=1,000 k$.
b) A ball is dropped from the top of a building and the distance of the ball from the ground was measured. The results are shown in the following table. Write a linear equation for the relationship between the time, t, and the distance from the ground, d.

Time (t seconds)	0	1	2	3	4
Distance (d meters)	120	90	60	30	0

The height at which the ball is dropped is 120 meters. After that, the height from ground decreases by 30 meters for every second. Make a table of values of t and d.

\boldsymbol{t}	\boldsymbol{d}
0	$120=120-0=120-30 \cdot 0$
1	$90=120-30=120-30 \cdot 1$
2	$60=120-60=120-30 \cdot 2$
3	$30=120-90=120-30 \cdot 3$
4	$0=120-120=120-30 \cdot 4$

A linear equation for d in terms of t is $d=120-30 t$.

Complete.

1. Write a linear equation for the relationship between degree Celsius, T, and Kelvins, K.
$1^{\circ} \mathrm{C}$ is \qquad Kelvins. So a linear equation for K in terms of T is \qquad

Name: \qquad Date: \qquad

Complete.

2. As a sandpit is being filled with sand, the height of the sand level in the pit was recorded. The results are shown in the table. Write a linear equation for the relationship between the time, t, and the height of the sand level, s.

Time (t minutes)	0	1	2	3	4
Height of Sand Level (s centimeters)	1	3	5	7	9

The initial height of the sand in the pit was \qquad centimeters. The height of the sand level increases by \qquad centimeters for every minute.

t	s
0	$\underline{\sim}$
1	
2	$\sim_{C}=\ldots+\ldots$
3	$\square=\sim+\ldots$
4	$\ldots=\ldots+\ldots$

A linear equation for s in terms of t is \qquad -.

Solve. Show your work.

3. Write a linear equation for the relationship between liters, L, and cubic centimeters, b.

Name: \qquad Date:

Solve. Show your work.

4. Drip coffee is collected by dripping water from a container on ground coffee and collecting the filtrate. The table shows the volume of water left in the container after making drip coffee for t minutes. Write a linear equation for the relationship between the time, t, and the volume of the water remaining, V.

Time (t minutes)	0	1	2	3	4
Volume of water remaining $\left(\mathbf{V} \mathbf{c m}^{3}\right)$	50	48	46	44	42

Evaluate linear equations with two variables.

Example

Find the value of y when $x=10$ in each of the equations.
a) $7 y+3 x=5$

$$
\begin{aligned}
7 y+4(10) & =5 & & \text { Substitute } x=10 . \\
7 y+40 & =5 & & \text { Simplify. } \\
7 y+40-40 & =5-40 & & \text { Subtract } 40 \text { from both sides. } \\
7 y & =-35 & & \text { Simplify. } \\
\frac{7 y}{7} & =\frac{-35}{7} & & \text { Divide both sides by } 7 . \\
y & =-5 & & \text { Simplify. }
\end{aligned}
$$

\qquad
\qquad
b) $2 y=\frac{x-1}{3}$

$$
\begin{array}{llrl}
2 y & =\frac{10-1}{3} & & \text { Substitute } x=10 . \\
2 y & =\frac{9}{3} & & \text { Simplify. } \\
2 y & =3 & & \text { Simplify. } \\
\frac{2 y}{2} & =\frac{3}{2} & & \text { Divide both sides by } 2 .
\end{array}
$$

$$
y=1 \frac{1}{2} \quad \text { Simplify. Express the value of } y \text { as a }
$$

mixed number.

Complete.

5. Find the value of y when $x=-2$ in the equation $\frac{1}{2} y=4-x$.

$$
\frac{1}{2} y=4-x
$$

\qquad Substitute $x=$ \qquad
\qquad Use the distributive property. Simplify.
\qquad $=$ \qquad . \qquad Multiply on both sides by \qquad

$$
y=\square \quad \text { Simplify. }
$$

\qquad
.

Find the value of y when $x=3$.
6. $6 y-\frac{1}{3} x+11=0$
7. $y=\frac{2 x+8}{5}$

