\qquad
\qquad

CHAPTER

Lines and Linear Equations

Lesson 4.1 Finding and Interpreting Slopes of Lines

Tell whether each graph represents a direct proportion. If so, find the constant of proportionality. Then write a direct proportion equation.
1.

2.

3.

4.

Name: \qquad
\qquad

Use slopes to compare two unit rates.

Example

The graphs give information about the distance, d, traveled over time, t, by two automated toy trains A and B on a straight track. Which train moves at a slower rate of speed?

Speed of toy train A: Unit rate $=\frac{\text { Rise }}{\text { Run }}$

$$
\begin{aligned}
& =\frac{30}{1} \\
& =30 \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

Speed of toy train B: Unit rate $=\frac{\text { Rise }}{\text { Run }}$

$$
\begin{aligned}
& =\frac{20}{4} \\
& =5 \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

The slope for the distance moved by toy $\operatorname{train} \mathrm{A}$ is \qquad 30 so the unit rate is \qquad 30 millimeters per second. The slope for the distance moved by toy train B is \qquad so the unit rate is
5 millimeters per second.
Toy train \qquad B has a slower rate of speed.

Name: \qquad Date: \qquad

Complete.

5. The graphs give information about the distance, d, over time, t, by two ball bearings, A and B, of different weights rolling down a ramp. Which ball bearing has a faster speed?

Speed of ball bearing A: Unit rate $=\frac{\text { Rise }}{\text { Run }}$

$=$ \qquad mm / s
Speed of ball bearing B: Unit rate $=\frac{\text { Rise }}{\text { Run }}$

$=$ \qquad mm / s

The slope for the speed moved by ball bearing A is \qquad so the unit rate is \qquad millimeters per second. The slope for the speed moved by ball bearing B is \qquad so the unit rate is \qquad millimeters per second.
\qquad has a faster speed.

Name: \qquad Date: \qquad

Solve. Show your work.

6. The graphs give information about the average number of words, n, over time, t, typed by persons A and B. Which person types at the faster rate?

Find the slope of a line given the graph.

Example

Find the slope of each line.

The graph passes through the points $(0,2)$ and $(2,5)$.

$$
\begin{aligned}
\text { Slope } & =\frac{\text { Rise }}{\text { Run }} \\
& =\frac{5-2}{2-0} \\
& =\frac{3}{2}
\end{aligned}
$$

The slope is \qquad

Name: \qquad
\qquad
b)

The graph passes through the points $(-4,6)$ and ($-1,0$).
Slope $=\frac{\text { Rise }}{\text { Run }}$
$=\frac{0-6}{-1-(-4)}$
$=\frac{-6}{3}$
$=-2$
The slope is \qquad -2 .

Find the slope of the line given the graph.
7.

8.

\qquad
\qquad

Compare two slopes to make a conclusion about real-world situations.

Example

Tap A fills tank A and tap B fills tank B with water at the same time. Tanks A and B are identical. The graphs represent the height, h, of the water level over time, t.

a) Find the slope of the line graph for tap A. What does it represent?

$$
\begin{aligned}
\text { Slope } & =\frac{\text { Rise }}{\text { Run }} \\
& =\frac{50}{5} \\
& =10 \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

The slope is \qquad The slope represents the rate of change in the height of the water level in tank A.
b) Find the slope of the line graph for $\operatorname{tap} B$. What does it represent?

$$
\begin{aligned}
\text { Slope } & =\frac{\text { Rise }}{\text { Run }} \\
& =\frac{100}{5} \\
& =20 \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

The slope is \qquad The slope represents the rate of change in the height of the water level in tank B.
c) Which tap is able to fill its tank faster?

The rate at which the height of the water level in \qquad tank B changes is faster than that of $\underline{\operatorname{tank} A}$ Tap B is able to fill its tank faster.

Name: \qquad Date: \qquad

Complete.

9. When two metal rods of the same length and width were heated, the temperature increases steadily until the rods reach their melting point. The graph represents the temperature, ${ }^{\circ} \mathrm{C}$, of the iron rod over time, t. The temperature of the copper rod is $247^{\circ} \mathrm{C}$ over the same length of time.

a) At what rate is the iron rod being heated?

Slope $=\frac{\text { Rise }}{\text { Run }}$

$=$ \qquad ${ }^{\circ} \mathrm{C} / \mathrm{min}$

The iron rod is being heated at a rate of \qquad ${ }^{\circ} \mathrm{C}$ per minute.
b) At what rate is the copper rod being heated? Round your answer to the nearest tenth.

Slope $=\frac{\text { Rise }}{\text { Run }}$

\approx \qquad ${ }^{\circ} \mathrm{C} /$ min

The copper rod is being heated at a rate of \qquad ${ }^{\circ} \mathrm{C}$ per minute.
c) Which rod is a better conductor of heat?

The \qquad rod is a better conductor of heat.

Name: \qquad Date: \qquad

Solve. Show your work.
10. A force from a collision in space causes two meteorites, A and B, to move in two directions. The graphs represent the distance, d, traveled by the two meteorites over time, t.

a) Find the slope of the line graph for meteorite A . What does it represent?
b) Find the slope of the line graph for meteorite B. What does it represent?
c) The force experienced by the two meteorites is the same. So the distance moved by the meteorites depends on the mass of the meteorites. Which meteorite has the greater mass?

Name: \qquad Date: \qquad

Find the slope of horizontal and vertical lines.

Example

Find the slope of the line.
Use the points $(4,4)$ and $(4,0)$.

$$
\begin{aligned}
\text { Slope } & =\frac{\text { Rise }}{\text { Run }} \\
& =\frac{0-4}{4-4} \\
& =\frac{4}{0} \\
& =\text { undefined }
\end{aligned}
$$

The slope is undefined

Complete.

11. Use the points (\qquad
\qquad) and \qquad
\qquad).
Slope $=\frac{\text { Rise }}{\text { Run }}$

$=$ \qquad
The slope is \qquad

Find the slope of the line.
12.

Name: \qquad Date: \qquad

Find the slope m of a line passing through two given points.

Example

Find the slope of the line.
$P(4,10)$ and $Q(2,5)$
Let $P(4,10)$ be $\left(x_{1}, y_{1}\right)$ and $Q(2,5)$ be $\left(x_{2}, y_{2}\right)$.
Method 1

$$
\begin{aligned}
\text { Slope } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{5-10}{2-4} \\
& =\frac{-5}{-2} \\
& =\frac{5}{2}
\end{aligned}
$$

The slope is \qquad

Method 2

$$
\begin{aligned}
\begin{aligned}
\text { Slope } & =\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \\
& =\frac{10-5}{4-2} \\
& =\frac{5}{2}
\end{aligned} \\
\text { The slope is } \frac{5}{2} .
\end{aligned}
$$

You can find the slope of the line by calculating the rise and the run either from point P to point Q or point Q to point P.

Name: \qquad Date:

Complete.

13. Find the slope of the line passing through the points $X(6,8)$ and $Y(1,2)$.

Let $X(6,8)$ be $\left(x_{1}, y_{1}\right)$ and $Y(1,2)$ be $\left(x_{2}, y_{2}\right)$.

Method 1

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Method 2

Slope $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$

The slope is \qquad

Find the slope of the line passing through each of the following pairs of points.
14. $A(10,15)$ and $B(15,25)$
15. $J(-1,-9)$ and $B(3,-3)$

