Boyle's Law

- The _____ of a fixed _____ of gas varies _____ with the _____ at constant _____.
- _____
- _____

Kinetic Theory and Boyle's Law

- _____ of a gas is caused by the _____ of the gas
 _____ the walls of the _____.
- If the gas is ______ to _____ the volume it had, ______ as many ______ are present in any ______
 * ______ as many ______ per _____ on the walls of the ______
 * ______ of the gas will ______
- <u>Ex 1:</u> A balloon filled with Helium has a volume of 457 mL at standard atmospheric pressure. After the balloon is released, it reaches an altitude of 6.3 km where the pressure is only 65.5 kPa. What is the volume of the balloon at this altitude?

<u>Ex 2:</u> Under a pressure of _____ mm Hg, a confined gas has a volume of _____mL. If the pressure is increased until the volume is _____ mL, what is the new pressure, assuming the temperature remains constant?

Charles's Law

• For a		of gas, as long as	the
is held	, the	varies	with the
	··································		
•			
•			
<u>he Kelvin Tem</u>	<u>perature Scale</u>		
	zero		
*	possible		
*	been reached		
	= absolute zero		
	==		
K =			

<u>Ex 1:</u> A quantity of gas occupies a volume of 506 cm³ at a temperature of $147^{\circ}C$. Assuming the pressure stays constant, at what temperature will the volume of the gas be 604 cm³?

Kinetic Molecular Theory and Charles's Law

•	the			of a gas			
	the average	of its					
•		moving molecu	ules				
	* strike the wa	lls of the					
	* strike the wa	lls of the		with			
•	From						
		if the			is		50
	that	would re	main	·			
		Т	he Chemist	ry Quiz			
CF	R1 CR2	1	2	3	4	5	
		CHEM	I ISTRY: A Stu © 2004, GPI 9.7	dy of Matter			