\qquad

The Combined Gas Law

- Expresses the relationship between the \qquad and
\qquad of a \qquad amount of \qquad .
or

Ex: A sample of gas has a volume of \qquad L when its temperature is \qquad K and its pressure is \qquad mm Hg . What volume will the gas occupy at STP?
$V_{1}=$ \qquad $V_{2}=$ \qquad
$\mathrm{T}_{1}=$ \qquad $\mathrm{T}_{2}=$ \qquad
$P_{1}=$ \qquad
$P_{2}=$ \qquad

Diffusion

- The \qquad spreading of a \qquad

Graham's Law of Diffusion

- Under the same conditions of \qquad and \qquad gases
\qquad at a rate \qquad proportional to the \qquad
\qquad of their \qquad (or \qquad
\qquad or

Ideal Gas Equation

-
- New variables:

```
\(n=\) of gas in
``` \(\qquad\)
```

$\mathrm{R}=$

``` \(\qquad\)
``` * constant
* value depends on
``` \(\qquad\)
``` used for
``` \(\qquad\)
``` and
``` \(\qquad\)
```

* value of $R$ when using

``` \(\qquad\)
``` and
``` \(\qquad\)
``` , \(R=\)
``` \(\qquad\)

Ex: The average lung capacity for a female student is 3.9 L . At normal body temperature, \(37^{\circ} \mathrm{C}\), and 110 kPa , how many moles of air could her lungs hold?
\(P=\) \(\qquad\)
\[
V=
\]
\(\qquad\) \(T=\) \(\qquad\)
\(n=\) \(\qquad\)
\(R=\) \(\qquad\)

\section*{Avogadro's Law}
- Equal \(\qquad\) of different \(\qquad\) under the \(\qquad\) conditions have the \(\qquad\) number of \(\qquad\) .
- Conversely, if samples of \(\qquad\) at the same
\(\qquad\) and \(\qquad\) contain the \(\qquad\) number of
\(\qquad\) then the \(\qquad\) of all the \(\qquad\) must be
\(\qquad\)
- \(A \dagger\) \(\qquad\) one \(\qquad\) of any gas occupies a \(\qquad\) of \(\qquad\) .
is the \(\qquad\)
\(\qquad\) of a gas.

Ex. 3.2 moles of \(\mathrm{KNO}_{3}\) are heated, producing \(\mathrm{O}_{2}\) and \(\mathrm{KNO}_{2}\). Calculate the volume of \(\mathrm{O}_{2}\) in liters, that could be obtained at STP.

Dalton's Law of Partial Pressures
- The \(\qquad\) of a gas \(\qquad\) is the \(\qquad\) of the of each gas \(\qquad\) .
-

Ex: Oxygen gas has been collected over water at a total pressure of 95.0 kPa and a temperature of \(25^{\circ} \mathrm{C}\). What is the pressure of the dry oxygen gas?

The Chemistry Quiz
CR1. \(\qquad\) CR2. \(\qquad\) 1. \(\qquad\) 2. \(\qquad\)
3. \(\qquad\) 4. \(\qquad\) 5. \(\qquad\)

CHEMISTRY: A Study of Matter```

