

Multiview Sketching

Multiview Drawing

- Shows two or more two-dimensional views of a three-dimensional object.
- Provides the shape description of an object.
- When combined with dimensions, serves as the main form of communication between designers and manufacturers.

Example of Multiview Sketch

Multiview Drawing

Multiview Drawing

All three-dimensional objects have width, height, and depth.

- Width is associated with an object's side-toside dimension.
- Height is associated with an object's top-tobottom dimension.
- Depth is associated with an object's front-toback dimension.

Multiview Drawing

TOP VIEW

Multiview Drawing

Orthographic Projection

- A technique used to create multiview drawings.
- Any projection of the features of an object onto an imaginary plane of projection.
- The projection of the features of the object is made by lines of sight that are perpendicular to the plane of the feature.

Orthographic Projection

The best way to understand orthographic projection is to imagine an object contained inside a glass box.

Orthographic Projection

There is a total of six glass walls surrounding the object. Each wall represents a projection plane onto which a twodimensional object view will be created.

Projection Plane

Also referred to as a plane of projection or picture plane, is an imaginary surface that exists between the viewer and the object.
The surface onto which a two-dimensional view of a three-dimensional object is projected and created.

Orthographic Projection

Start by focusing only on the front projection plane. A person standing in front of the object would see only the five corners identified in black.

Orthographic Projection

Projection lines are used to project each corner outward until they reach the projection plane.

Projection Line

An imaginary line that is used to locate or project the corners, edges, and features of a three-dimensional object onto an imaginary two-dimensional surface.

Orthographic Projection

The visible edges of the object are then identified on the projection plane by connecting the projected corners with object lines.

Orthographic Projection

The orthographic projection process is then repeated on the other projection planes.

Orthographic View Selection

Recommendations for how to select the front view

- Most natural position or use
- Shows best shape and characteristic contours
- Longest dimensions
- Fewest hidden lines
- Most stable and natural position

Orthographic View Selection

Number of Orthographic Projections

One View

- Uniform thickness or shape
- Two views would be identical
- All dimensions properly and easily shown on one view

Number of Orthographic Projections

Two Views

- Symmetrical part
- A third view would be identical to one other
- Second view is necessary for depth

Sketching a Multiview Drawing

Given the overall dimensions of the object, a pencil, and a sheet of graph paper, sketching a multiview drawing can be easily done using points, construction lines, and object lines.

Sketching a Multiview Drawing

Step 1 - Layout the boxes within which the individual views will occur using points and construction lines.

Sketching a Multiview Drawing

Step 2 - Use construction lines between the views to indicate the geometry of the views.

Sketching a Multiview Drawing

Step 3 - Identify the visible edges with object lines.

Sketching a Multiview Drawing

 Step 4 - Locate hidden lines.

Historical Example

Leonard P. Karr (1913-1995) designed a man-sized hunting blind shaped like a goose called Super Goose, 1991.

- How would you label the views presented in the drawing?
- Are Mr. Karr's views properly aligned based on the orientation presented here?
- How would you rearrange the views?

A Question...

Each of the blocks at the right has the same overall dimensions and color. What else do they have in common?

A Question...

They all have identical top views!

