\qquad
\qquad

Lesson 5.3 Solving Direct Proportion Problems

Write a direct variation equation and find the indicated value.

Example

y varies directly as x, and $y=6$ when $x=2$.
a) Write an equation that relates y and x.

Constant of proportionality: $\frac{y}{x}=\frac{6}{2}=\frac{3}{3}$
The direct proportion equation is $y=3 x$.
b) Find y when $x=6$.

Method 1

Use a proportion.

$$
\begin{aligned}
\frac{6}{2} & =\frac{y}{6} \\
2 \cdot y & =6 \cdot 6 \\
2 y & =36 \\
\frac{2 y}{2} & =\frac{36}{2} \\
y & =18
\end{aligned}
$$

c) Find x when $y=24$.

Method 1

Use a proportion.

$$
\begin{aligned}
\frac{6}{2} & =\frac{24}{x} \\
6 \cdot x & =24 \cdot 2 \\
6 x & =48 \\
\frac{6 x}{6} & =\frac{48}{6} \\
x & =8
\end{aligned}
$$

Method 2

Use a direction proportion equation.

$$
\text { When } x=6
$$

$y=3 \cdot 6$
$y=18$

Method 2

Use a direction proportion equation.
When $y=24$ and $y=3 x$,
$24=3 x$
$\frac{24}{3}=\frac{3 x}{3}$
$8=x$

Name: \qquad Date: \qquad

Complete.

1. p varies directly as r, and $p=12$ when $r=3$.
a) Write an equation that relates p and r.

Constant of proportionality: $\frac{p}{r}=$ \qquad $=$ \qquad
The direct proportion equation is $p=$ \qquad r.
b) Find p when $r=4$.

Method 1

Use a proportion.

$$
p \cdot 3=12 .
$$

\qquad

$$
3 p=
$$

\qquad

$$
\frac{3 p}{\square}=
$$

$$
p=
$$

\qquad
c) Find r when $p=40$.

Method 1

Use a proportion.

$$
2
$$

$$
\frac{12}{3}=\frac{\square}{r}
$$

$$
12 \cdot r=
$$ \cdot

\qquad

$$
r=
$$

Method 2

Use a direction proportion equation.

When $r=4$ and $p=$ \qquad r,
$p=$ \qquad - \qquad
$p=$ \qquad

Method 2

Use a direction proportion equation.

$$
\begin{aligned}
\text { When } p & =\text { and } p=\text { a } \\
& =\text { r, } \\
& =\text { r, } \\
\square & =
\end{aligned}
$$

Write a direct variation equation and find the indicated value.

2. m varies directly as n, and $m=18$ when $n=6$.
a) Write an equation that relates m and n.
b) Find m when $n=3$.
c) Find n when $m=36$.
3. y varies directly as x, and $y=5$ when $x=10$
a) Write an equation that relates y and x.
b) Find y when $x=8$.
c) Find x when $y=25$.
4. s varies directly as q , and $s=2$ when $\mathrm{q}=5$.
a) Write an equation that relates s and q.
b) Find s when $\mathrm{q}=25$.
c) Find q when $s=8$.

Name: \qquad Date: \qquad

In each table, \boldsymbol{y} is directly proportional to x. Complete the table.
Example

\boldsymbol{x}	2	a)	5
\boldsymbol{y}	10	15	b)

a) $\frac{2}{10}=\frac{x}{15}$
$2 \cdot 15=x \cdot 10$
$30=10 x$
$\frac{30}{10}=\frac{10 x}{10}$
$3=x$
b) $\frac{2}{10}=\frac{5}{y}$

$$
\begin{aligned}
2 y & =50 \\
\frac{2 y}{2} & =\frac{50}{2} \\
y & =25
\end{aligned}
$$

Since y is directly proportional to x, you can use proportional reasoning to solve for the unknown values.

Complete.

5.

\boldsymbol{x}	4	a)	10
\boldsymbol{y}	12	18	b)

a)

b)

$$
\begin{aligned}
x \cdot 12 & =4 \cdot \\
12 x & = \\
\frac{12 x}{\square} & =
\end{aligned}
$$

\qquad . \qquad $=$ \qquad
\qquad $=$ \qquad

$$
x=
$$

\qquad \cdot \qquad
\qquad

In each table, y is directly proportional to x. Complete the table.

6. | \boldsymbol{x} | 2 | a) | 5 |
| :---: | :---: | :---: | :---: |
| \boldsymbol{y} | 14 | 28 | b) - |
7.

\boldsymbol{x}	4	a)	16
\boldsymbol{y}	1	3	b)

8.

\boldsymbol{x}	3	a)	7
\boldsymbol{y}	42	70	b)

Name:
Date: \qquad

Solve. Show your work.

Example

The mass of a collection of copper coins, y grams, is directly proportional to the number of coins in the collection, c. The mass of 12 coins is 36 grams.
a) Find the constant of proportionality.

Constant of proportionality: $\frac{y}{c}=\frac{36}{12}=3$
The constant of proportionality is \qquad 3
b) Write an equation that relates y and c.

The direct proportion equation is $y=3 c$.
c) Find the mass of a collection of 30 coins.

$$
\text { When } c=30 \text { and } y=3 c, y=3 \cdot 30
$$

$$
y=90
$$

The mass of a collection of 30 coins is 90 grams.

Complete.

9. The number of tourists, n, in a tour group, is directly proportional to the number of buses, c, a travel agent needs to reserve. A travel agent reserves 6 buses for 360 tourists.
a) Find the constant of proportionality.

Constant of proportionality: $\frac{n}{c}=$ \qquad $=$ \qquad
The constant of proportionality is \qquad
b) Write an equation that relates c to n.

The direct proportion equation is \qquad
c) Find the value of c when $n=240$.

When $n=$ \qquad and $n=$ \qquad $c_{1} \longrightarrow=$ \qquad - c
\qquad
\qquad
\qquad

Name: \qquad

Date: \qquad

Solve. Show your work.

10. The number of cell phones produced by a manufacturer, s, is directly proportional to the number of hours, h, that the production line is operational. The production line is capable of producing 72 cell phones in 48 hours.
a) Find the constant of proportionality.
b) Write an equation that relates s and h.
c) Find the value of s when $h=40$.
11. The number of loaves of bread, N, produced at a local bakery is directly proportional to the time it takes to bake the bread, T. It takes 4 hours to bake 220 loaves of bread.
a) Find the number of loaves of bread baked in 1 hour.
b) Write an equation that relates N and T.
c) How long does it take to bake 330 loaves of bread?
12. The distance traveled by an aircraft, d miles, is directly proportional to the duration of the flight, t hours. It takes 3 hours to travel 1,350 miles.
a) Find the distance the aircraft travels in 1 hour.
b) Write an equation that relates d and t.
c) How long does it take to travel 2,250 miles?
