Lesson 5.4 Understanding Inverse Proportion

Tell whether two quantities are in inverse proportion. If so, find the constant of proportionality.

Example -

х	2	4	6
у	12	6	4

For each pair of values, x and y:

$$xy = 2 \cdot 12$$

$$xy = 4 \cdot 6$$

$$= 24$$

$$xy = 2 \cdot 12$$
 $xy = 4 \cdot 6$ $xy = 6 \cdot 4$ $= 24$ $= 24$

Check to see whether the product of x and yis a constant value.

Is x inversely proportional to y? Yes

If yes, what is the constant of proportionality? 24

Complete.

2 3 6 18 12 6

For each pair of values, x and y:

Is x inversely proportional to y? _____

If yes, what is the constant of proportionality? _____

2.

•	х	2	5	15
	У	25	10	3

For each pair of values, x and y:

Is x inversely proportional to y? _____

If yes, what is the constant of proportionality? _____

Tell whether two quantities are in inverse proportion. If so, find the constant of proportionality.

3.

х	2	3	4
у	9	6	4.5

Is x inversely proportional to y? _____

If yes, what is the constant of proportionality?_____

4.

4.	х	30	40	60
	У	10	8	5

Is x inversely proportional to y? _____

If yes, what is the constant of proportionality?_____

5.

•	х	2	3	4
	у	1	<u>2</u> 3	1/2

Is x inversely proportional to y? _____

If yes, what is the constant of proportionality?_____

Tell whether two quantities are in inverse proportion. If so, find the constant of proportionality.

– Example -

$$\frac{2}{3}y = \frac{6}{x}$$

$$\frac{2}{3}y = \frac{6}{x}$$

$$2 \quad 3 \quad 6$$

$$\frac{2}{3}y \cdot \frac{3}{2} = \frac{6}{x} \cdot \frac{3}{2}$$

$$y = \frac{9}{x}$$

$$y \cdot x = \frac{9}{x} \cdot x$$

$$xy = 9$$

Rewrite the equation as an equivalent equation in the form

$$xy = k \text{ or } y = \frac{k}{x}.$$

Can the original equation be written as two equivalent equations in the form

$$xy = k$$
 and $y = \frac{k}{x}$? Yes

Is the equation an inverse proportion, and if so, what is the constant of proportionality?

Yes. The constant of proportionality is 9.

Complete.

6.
$$3y = \frac{9}{x}$$

$$3y = \frac{9}{x}$$

$$3y \cdot \underline{\qquad} = \frac{9}{x} \cdot \underline{\qquad}$$

$$y = \frac{\underline{\qquad}}{x}$$

Can the original equation be written as two equivalent equations in the form

$$xy = k$$
 and $y = \frac{k}{x}$?

Is the equation an inverse proportion, and if so, what is the constant of proportionality?

Complete.

7.
$$y + 6x = 8$$

$$y + 6x = 8$$

 $y + 6x - \underline{\hspace{1cm}} = 8 - \underline{\hspace{1cm}}$
 $\underline{\hspace{1cm}} = \underline{\hspace{1cm}} - \underline{\hspace{1cm}}$

Can the original equation be written as two equivalent equations in the form xy = k and $y = \frac{k}{x}$?

Is the equation an inverse proportion, and if so, what is the constant of proportionality?

Tell whether two quantities are in inverse proportion. If so, find the constant of proportionality

8.
$$2y = \frac{4}{x}$$

9.
$$3y = \frac{x}{9}$$

10.
$$6x = \frac{2}{v}$$