\qquad

- A \qquad reaction is the reaction between an \qquad
and a \qquad to produce a \qquad plus
- A \qquad is any compound containing the \qquad from a base and the \qquad from an acid.

Write the neutralization reaction when $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with KOH . Label the acid, the base, and the salt.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KOH} \rightarrow
$$

Write the neutralization reaction when \qquad acid reacts with
\qquad hydroxide.

- A \qquad is a laboratory method used to determine the
\qquad of an acid or base in \qquad by performing a
\qquad reaction with a \qquad solution.
- In a \qquad solution, the \qquad of \qquad ions must equal the \qquad of \qquad ions.

$$
\begin{gathered}
\text { moles } _=\frac{\text { moles }_{1 \text { mole }_{A}}}{}\left(M_{A}\right)\left(V_{A}\right) \\
\text { moles__ }=\frac{\text { moles }_{1 \text { mole }_{B}}\left(M_{B}\right)\left(V_{B}\right)}{1 \text { mole }_{A}}\left(M_{A}\right)\left(V_{A}\right)=\frac{\text { moles }}{1 \text { mole }_{B}}\left(M_{B}\right)\left(V_{B}\right)
\end{gathered}
$$

Example Titration Problem:

Find the molarity of this sample of hydrochloric acid (HCl) by neutralizing it with 0.5 M sodium hydroxide (NaOH).

Volume of HCl	Volume of NaOH

- The \qquad of a titration is the point at which the indicator changes \qquad indicating that \qquad has been reached so the \qquad of \qquad ions and the
\qquad of \qquad ions are \qquad .

$$
\frac{{\text { moles } H^{+}}_{1 \text { mole }_{A}}}{\left(M_{A}\right)\left(V_{A}\right)=\frac{\text { moles OH }}{}{ }^{-}} \frac{1 \text { mole }_{B}}{}\left(M_{B}\right)\left(V_{B}\right)
$$

In a titration of \qquad with \qquad mL of the base were required to neutralize 10.0 mL of a M \qquad .What is the molarity of the KOH ?
60.0 mL of \qquad molar \qquad were needed to neutralize 30.0 mL of \qquad What is the molarity of the acid?

The Chemistry Quiz
\qquad CR2. \qquad

1. \qquad
2. \qquad 3. \qquad 4. \qquad 5. \qquad
