\qquad

Any molecule containing only \qquad atoms has a \qquad shape.

To predict shapes of molecules with more than 2 atoms we use the VSEPR theory:

- VSEPR stands for \qquad - \qquad , \qquad - \qquad
- Since electrons \qquad each other, electrons pairs will be as
\qquad apart as possible.

shape	number of atoms bonded to central atom	number of unshared pairs of electrons	example
linear $\text { (__ }{ }^{\circ} \text { angle) }$			$O=C=O$
trigonal planar 0 angles $)$			$\begin{gathered} H_{1} \\ H^{\prime}=0 \end{gathered}$
tetrahedral \qquad angles)			
bent			
trigonal pyramidal			

Polar Molecules:

- must contain at least one \qquad bond
- are shaped so that there is a \qquad and a \qquad end
example of a polar molecule:

Non-polar Molecule:

- contains only \qquad bonds -or-
- contains polar bonds, but has no
example of a non-polar molecule:

Intermolecular Forces

- \qquad of attraction \qquad molecules
- are \qquad than covalent and ionic bonds
- 3 types:

1. Dipole-dipole forces:

- force of attraction between the \qquad end of one \qquad and the \qquad end of another molecule
- the \qquad of all the intermolecular forces

2. Hydrogen Bonding:

- occurs in molecules with H - \qquad H \qquad , and H - \qquad bonds
- large \qquad charge on H is attracted to an
\qquad pair of electrons on a neighboring \qquad

3. London Dispersion Forces:
intermolecular forces resulting from constant of \qquad

- the only type of intermolecular force between nonpolar molecules

The Chemistry Quiz

CR1.
CR2.
1.
2.
3.
4.
5.

