\qquad

Lesson 6.3 Alternate Interior, Alternate Exterior, and Corresponding Angles

In each diagram, $\overleftrightarrow{A C}, \overleftrightarrow{D F}$, and $\overleftrightarrow{G H}$ are straight lines. $\overleftrightarrow{A C}$ is parallel to $\overleftrightarrow{D F}$. Identify all the pairs of angles formed by the intersection of $\overleftrightarrow{G H}$ with $\overleftrightarrow{A C}$ and $\overrightarrow{D F}$.

Complete.

a) Alternate interior angles: $\angle A B G$ and
\qquad
\qquad and $\angle D E H$
b) Alternate exterior angles: \qquad and $\angle A B H$
$\angle H B C$ and \qquad
c) Corresponding angles: $\angle A B G$ and $\angle D E G$
\qquad
\qquad
\qquad and \qquad
2.

a) Alternate interior angles: \qquad and \qquad
\qquad and \qquad
b) Alternate exterior angles: \qquad and \qquad
\qquad and \qquad
c) Corresponding angles: \qquad and \qquad and \qquad
\qquad and \qquad
\qquad and \qquad

Name: \qquad Date: \qquad

Complete.

3.

a) Alternate interior angles: \qquad and \qquad
\qquad and \qquad
b) Alternate exterior angles: \qquad and \qquad
\qquad and \qquad
c) Corresponding angles: \qquad and \qquad
and \qquad
\qquad and \qquad
\qquad and \qquad

Find the measure of each numbered angle.

Example

In the diagram, $\overleftrightarrow{A C}$ is parallel to $\overleftrightarrow{D F}$
$m \angle 1=67^{\circ}$
$m \angle 2=67^{\circ}$

Corr. $\angle \mathrm{s}$
Alt. int. $\angle \mathrm{s}$

$$
\begin{aligned}
m \angle 1+m \angle 3 & =180^{\circ} \\
67^{\circ}+m \angle 3 & =180^{\circ} \\
67^{\circ}+m \angle 3-67^{\circ} & =180^{\circ}-67^{\circ} \\
m \angle 3 & =113^{\circ}
\end{aligned}
$$

Supp. \angle s
Substitute.
Subtract 67° from both sides. Simplify.

Complete.

4. In the diagram, $\overleftrightarrow{X Y}$ is parallel to $\overleftrightarrow{P Q}$. Find the measures of $\angle 1, \angle 2$, and $\angle 3$.

$m \angle 1=$ \qquad
$m \angle 1+m \angle 3=$ \qquad
$+m \angle 3=$ \qquad
$m \angle 3+$ \qquad $-125^{\circ}=$ \qquad $\mathrm{m} \angle 3=$ \qquad -125° Subtract 125° from both sides. Simplify.

$$
\mathrm{m} \angle 3=
$$

 \(=\)
 \qquad

